વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો. 

  • [AIEEE 2012]
  • A

    $R$

  • B

    $(-1,1)$

  • C

    $R-\{0\}$

  • D

    $[-1,1]$

Similar Questions

નીચેનામાંથી ક્યુ વિધેય છે?

જો $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, તો $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ મળે.

સાબિત કરો કે વિધેય $f : R \rightarrow\{ x \in R :-1< x <1\}$, $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$, એક-એક અને વ્યાપ્ત વિધેય છે. 

સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી. 

$\alpha$ ની ન્યુનતમ કિમત મેળવો કે જેથી વક્ર $f(x) = ||x -2| -\alpha|-5$ ને બરાબર ચાર $x-$ અંત:ખંડ હોય.